Machine Learning Techniques to Identify Dementia
نویسندگان
چکیده
منابع مشابه
Using Machine Learning Techniques to Identify Botnet Traffic
To date, techniques to counter cyber-attacks have predominantly been reactive; they focus on monitoring network traffic, detecting anomalies and cyber-attack traffic patterns, and, a posteriori, combating the cyber-attacks and mitigating their effects. Contrary to such approaches, we advocate proactively detecting and identifying botnets prior to their being used as part of a cyber-attack [12]....
متن کاملUsing Machine Learning to Identify Intonational Segments
The intonational phrase is hypothesized to represent a meaningful unit of analysis in spoken language interpretation. We present results on the identification of intonational phrase boundaries from acoustic features using classification and regression trees (CART). Our training and test data are taken from the Boston Directions Corpus (task-oriented monologue) and the HUB-IV Broadcast News data...
متن کاملUsing Linguistic Information and Machine Learning Techniques to Identify Entities from Juridical Documents
Information extraction from legal documents is an important and open problem. A mixed approach, using linguistic information and machine learning techniques, is described in this paper. In this approach, top-level legal concepts are identified and used for document classification using Support Vector Machines. Named entities, such as, locations, organizations, dates, and document references, ar...
متن کاملApplying machine learning techniques to ecological data
This thesis is about modelling carbon flux in forests based on meterological variables using modern machine learning techniques. The motivation is to better understand the carbon uptake process from trees and find the driving factors of it, using totally automated techniques. Data from two British forests were used, (Griffin and Harwood) but finally results were obtained only with Harwood becau...
متن کاملMachine Learning Techniques to Predict Software Defect
Machine learning techniques have been dominating in the last two decades. The recently published comprehensive state-of-the-art review (Mohanty et al., 2010) justifies this issue. The ability of software quality models to accurately identify critical faulty components allows for the application of focused verification activities ranging from manual inspection to automated formal analysis method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Computer Science
سال: 2020
ISSN: 2662-995X,2661-8907
DOI: 10.1007/s42979-020-0099-4